168 research outputs found

    The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Releases 10 and 11 Galaxy Samples

    Get PDF
    We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 \u3c z \u3c 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd, fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd, fid) at z = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd, fid) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd, fid) and H = (96.8 ± 3.4 kms-1 Mpc-1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant

    A Multi-Site Analysis of the Prevalence of Food Insecurity in the United States, before and during the COVID-19 Pandemic

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) pandemic profoundly affected food systems including food security. Understanding how the COVID-19 pandemic impacted food security is important to provide support and identify long-term impacts and needs. Objective: The National Food Access and COVID research Team (NFACT) was formed to assess food security over different US study sites throughout the pandemic, using common instruments and measurements. This study presents results from 18 study sites across 15 states and nationally over the first year of the COVID-19 pandemic. Methods: A validated survey instrument was developed and implemented in whole or part through an online survey of adults across the sites throughout the first year of the pandemic, representing 22 separate surveys. Sampling methods for each study site were convenience, representative, or high-risk targeted. Food security was measured using the USDA 6-item module. Food security prevalence was analyzed using ANOVA by sampling method to assess statistically significant differences. Results: Respondents (n = 27,168) indicate higher prevalence of food insecurity (low or very low food security) since the COVID-19 pandemic, compared with before the pandemic. In nearly all study sites, there is a higher prevalence of food insecurity among Black, Indigenous, and People of Color (BIPOC), households with children, and those with job disruptions. The findings demonstrate lingering food insecurity, with high prevalence over time in sites with repeat cross-sectional surveys. There are no statistically significant differences between convenience and representative surveys, but a statistically higher prevalence of food insecurity among high-risk compared with convenience surveys. Conclusions: This comprehensive study demonstrates a higher prevalence of food insecurity in the first year of the COVID-19 pandemic. These impacts were prevalent for certain demographic groups, and most pronounced for surveys targeting high-risk populations. Results especially document the continued high levels of food insecurity, as well as the variability in estimates due to the survey implementation method

    Species and population specific gene expression in blood transcriptomes of marine turtles

    Get PDF
    Background: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms’ responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. Results: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. Conclusions: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles

    Americans, Marketers, and the Internet: 1999-2012

    Full text link

    Reward-Related Behavioral Paradigms for Addiction Research in the Mouse: Performance of Common Inbred Strains

    Get PDF
    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore